Comparison of the Dirichlet-Neumann and Optimal Schwarz Method on the Sphere
نویسندگان
چکیده
We investigate the performance of domain decomposition methods for solving the Poisson equation on the surface of the sphere. This equation arises in a global weather model as a consequence of an implicit time discretization. We consider two different types of algorithms: the Dirichlet-Neumann algorithm and the optimal Schwarz method. We show that both algorithms applied to a simple two subdomain decomposition of the surface of the sphere converge in two iterations. While the Dirichlet-Neumann algorithm achieves this with local transmission conditions, the optimal Schwarz algorithm needs non-local transmission conditions. This seems to be a disadvantage of the optimal Schwarz method. We then show however that for more than two subdomains or overlapping subdomains, both the optimal Schwarz algorithm and the Dirichlet Neumann algorithm need non-local interface conditions to converge in a finite number of steps. Hence the apparent advantage of DirichletNeumann over optimal Schwarz is only an artifact of the special two subdomain decomposition.
منابع مشابه
An efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملA Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates
This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...
متن کاملDirichlet-neumann and Neumann-neumann Waveform Relaxation Algorithms for Parabolic Problems
We present and analyze waveform relaxation variants of the Dirichlet-Neumann and NeumannNeumann methods for parabolic problems. These methods are based on a non-overlapping spatial domain decomposition, and each iteration involves subdomain solves with Dirichlet boundary conditions followed by subdomain solves with Neumann boundary conditions. However, unlike for elliptic problems, each subdoma...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملOptimal Interface Conditions for an Arbitrary Decomposition into Subdomains
The use of Dirichlet-to-Neumann operators as transmission conditions is known to yield optimal Schwarz methods that converge in a finite number of iterations when the subdomain decomposition has tree-like connectivity. However, it remains an open problem whether it is possible to construct a finitely terminating algorithm for arbitrary decompositions. In this article, we construct a Schwarz met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004